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Turing model for the patterns of lady beetles
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We simulate the patterns on the hard wings of lady beetles using a reaction-diffusion equation based on the
Turing model. A part of a spherical surface is used to approximate the geometry of the hard wings. Various
patterns common to lady beetles in Taiwan can be produced on this curved surface by adjusting the parameters

of the model.
DOI: 10.1103/PhysRevE.64.041909 PACS nuni®er87.10+e, 87.17.Aa, 47.54:r
I. INTRODUCTION There are over 4500 species of lady beetles on earth. The

conspicuous pattern on the elytra can be easily identified for

In 1952 Turing proposed a general model for generatinginy particular species. Except for a few species, lady beetles
biological pattern§1]. The model was realized in some defi- have definite, recognizable patterns. That is, these patterns
nite forms and has been used successfully to produce padre stable with respect to evolution. Spots pattern are most
terns in various biological cases such as seashells, fish, zéommon. Some have stripes or a combination of spots and
bras, leopards, giraffes, eti2]. The formation of patterns stripes._F_’attern_s on the elytra are always symm_etric. Thgt is,
and their stabilities in these kinds of reaction-diffusion the positions, sizes, and colors of spots and stripes are iden-
model are well studied and understood in the general sendi¢@l on the two hard wings.

[3,4]. However, a specific pattern cannot be predicted. This
is because there are several parameters that can be adjusted
to produce all kinds of possibilities in any of these models.

In most of these systems, calculations are done on a flat The generic form of the Turing model consists of two
surface. That is, the reaction-diffusion equations in thetypes of morphogen, sayandv, interacting with each other
model are solved on a surface of zero curvature. The curvawhile diffusing on a surface. It can be written as
ture of the geometry of the system is not taken into consid-
eration. Recently, Varea, Aragon, and Barrio solved a Turing

Ill. THE MODEL

model on a spherical surfa¢g|. In their work they produced o =D V2u+f(u,v),
symmetric spot patterns on a sphere, which can be consid- at
ered as a first step toward simulating the patterns of some (1)
microscopic organisms such as radiolarians and viruses. In J
. . . . 1%
this work, we consider a different type of Turing model on a o D,VZ+g(u,v),

spherical surface. A portion of a spherical surface is used to
approximate the shape of the hard wings of lady beetles. We

demonstrate that the model we use can yield patterns Sim“%hereDu andD. are the diffusion coefficients of the mor-
U
to those of the lady beetles. phogensu andv, respectively. Although the actual interac-

Il. PATTERNS OF LADY BEETLES

Lady beetlegcoccinellids are familiar to people because
of their beauty and interesting behavior. They are of a size
about 0.8 to 1.8 cm. They have pleasing rounded forms and
usually have bright, contrasting red and black colors. They
like to walk along a stem all the way up and fly away from
the top(Fig. 1). In case of danger, they will lie on their backs
motionlessly for a long time, then suddenly turn onto their
feet and fly away. The beetles have a pair of thickened
wings, the elytra, which protect the hind wings and soft ab-
domen underneath. The elytra of the adult emerging from the
pupa are soft, light in color, and without pattern. It takes
minutes, hours, or in some cases days for the pattern to ap- FIG. 1. A seven-star lady beetle on the top of a stem is ready for
pear on the elytra. takeoff.
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FIG. 2. For the model given by Eq&) and (4), the constant
production terme-, has a minimal positive value in order to gener- ~ FIG. 3. According to the requirement of Ed), the threshold
ate a pattern according to the requirement of Ba,) The plot is value of the ratid)v /D, is plotted as a function of. It can be seen
the value off ,+g, as a function ofo, for two different values of from the plot that the diffusion constant forhas to be larger than
k, k=0 and 10. that of u in order to generate patterns.

tion betweenu andv is unknown, there are a few models where the derivatives df and g with respective tau andv
with explicit forms forf(u,v) andg(u,v) that can generate (namely,f,=df/du, etc) are evaluated at the steady state
large varieties of biological patterns. We take the model in{ug,v,) such thatf(ug,v) =0, g(ug,v,)=0. For example,
troduced by Gierer and Meinhardt used for activator-in our calculation below, we fix the values of the parameters:
substrate systeni$§]. Explicitly, it is

o p,=0.18, p,=0.36 u,=0.08. (4)

F(u,0)=pug iz Huls
@) To satisfy Eq..(3a), a constant prodqc_tion rate of must be
u2v presem(see'F|g. 2 The crgmal condition for the appearance
g(u,v)=-— PTG T of patterns is that must diffuse faster than does, namely,
u D,/D,>1. For example, choosing E¢) and

wherep,, p,, ®u, 0,, and x are non-negative constants.

That is, we assume thatandv interact effectively accord- 0,=0.1, 5
ing to the formu®y, the interaction saturates whengets

large, and the saturation constantis nonzero.v is con-  the threshold value of the ratid, /D, as a function of is
sumed at the ratg, in activating the increase ofat the rate  pjotted in Fig. 3. Values oD, /D, below the curve cannot

py- Uis removed at the rate, proportional to the amount of generate patterns. The minimal valuelyf/D,, is 7.8 when
u. There is also a constant production tesm for v. With . —q.

zero-flux boundary conditions, i.); Vu=0, i-Vv=0 on When these conditions are satisfied, a spot pattern will
the boundary, the general conditions for the generation ofppear wherk=0. On increasing the rati®, /D, or the
spatial patterns are given 4] values ofD, andD, , fewer but larger spots appe@ee Fig.
4). Turning on the saturation effeet*0 leads to the forma-
fy+9,<0, (38 tion of stripes(see Fig. 5.
D,f,+D,g,>0, (3b)

IV. NUMERICAL CALCULATION

fug—f,9,>0, (30) The geometry of the hard wings of lady beetles is a por-

5 tion of a curved surface. The basic patterns on the curved
(D,fy—Dyg,)*+4D,D,f,9,>0, (3d  surface are not different from those on a flat surface. How-
ever, the exact positions and shapes of the spots and stripes

D, =0.0005, D, =50D, D, =0.0005, D, =100D, D, =002, D, =50D, FIG. 4. A square flat surface is used for dem-
onstrating the general patterns of our model. Spot

‘ m - pattern is dominant when the saturation constant

e e o v is zero,x=0. Increasing the rati®, /D or both
‘ ﬂ * - values ofD, and D,, we get fewer but larger
P * spots. Constants for getting these patterns are
. A T chosen as follows: p,=0.01, p,=0.02, u,

= =0.01, ando,=0.02.

#

i
t
o

3

041909-2



TURING MODEL FOR THE PATTERNS OF LADY BEETLES PHYSICAL REVIEW B4 041909

FIG. 5. When the saturation constant is not
zero, a stripe pattern appears. At largerthe
pattern is multiply connected. In this ploD,
=0.005,D,=50D,, and other constants are the
same as in Fig. 4.

are strongly dependent on the curvature of the surface andhere Af6==/M, Ae=¢/N, and # is evaluated at i(
the shape of the boundalry]. We approximate the surface of —3)A#6,(j—3)Ae. The zero-flux boundary condition is sat-
the hard wings by a part of a sphere; the surface is defined bgfied by the requirement that the derivativesuodndov in

the area with spherical coordinatés< 6<m, 0<¢< (the  the direction normal to the boundary vanish. In the finite
radius of the spherical surface can be chosen to be 1 bifference approximation, they are

adjusting the scale of all the equatigiisee Fig. 6. To simu-

late the diffusion process, we ub&x N grids on the surface uip=1j)=ulio* 1),

of a half hemisphere. That is, we discretize the distributions ) .

u(6,¢) and v(6,¢) as u(i,j) and v(i,j) evaluated ati u(M+1j)=u(M-1j),

=(m—3)7/M, m=i,,...M, j=(n—3)7/M, n=jg,,....N o o

—jo+1. We chooseM =48, N=48, i,=9, andj,=1 in u(i,jo= 1 =uli,jot1),

some of our calculation anl =72, N=72,i,=19, andj, ] ] ] ]

>1 in others, as indicated in the figures. The evolutions of u(i,N+2—jo)=u(i,N=jo), 8

the distributions are calculated using the Euler method. That d simil fo(i i
is, the value ofu(i,j) at timet=(k+ 1)At is given by and similar ones foo(i. ).

U 1,1 = Ui, ) + At Dy V2uy(i )
UL ]) vk, (6)

The Laplace operator is approximated by the difference
equation

1
V2uy(i,j)= W[uk(i 1)) Fuei— 1)) —2u(i.j) ]

1 1
+ mm[uk(i +1))—u(i—=1j)]

1 1 . .
+ mw[uk(hl +1)+ui,j—1)
_2k(i1j)]1 (7)

FIG. 7. (a) Initial and (b) final distributions ofu with diffusion
constantsD ,=0.0005,D,=0.035, and saturation constart=0.
FIG. 6. The geometry of the hard wings of the lady beetle isThe hard wings are projected on tReplane. The final pattern is
approximated by a part of a spherical surface, defined in sphericaimilar to(c), the pattern of the beetRlatynaspidius quinquepunc-
coordinates by =1, 9,< <, 0<ep<mr. tatus M=48,N=48,i,=9, andj,=1.
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FIG. 8. Final distributions ofu with diffusion constantsD,
=0.0005,D,=0.025 and saturation constant0. The pattern is
similar to that of the seven-star lady beetle shown in Fig. 1.
M=48,N=48,i,=9, andj,=1.

(b)

V. RESULTS AND DISCUSSION

With the chosen model, geometry, and numerical method,
the calculation to get patterns is not trivial. The necessary
condition of Eq.(3) is easy to satisfy but it cannot be used to
predict the final patterns of the simulations. The initial con-
dition is crucial for the final pattern. Since there is no experi-
mental evidence for the existence of the morphogens, we
have no basis to set the initial distributions of the morpho-
gens. We therefore take this freedom to choose the initial
distributions ofu andv arbitrarily. Random distributions are
not considered because they lead to different patterns on the
two hard wings. A uniform distribution over the surface or a
constant value assigned on part of the boundary of the sur-
face are the simplest reasonable initial setups. For the first
examp|e' we take the constants in Et) as given in Eqs(4) FIG. 10. (a) Initial and (b) final distributions ofu with diffusion
and (5) and D,=0.0005,D,=70D,, x=0. We choose the constantsD ,=0.000 028,D,=0.000 168 and saturation constant

e =0.35. The final pattern is similar t(c), pattern of the beetle
initial value ofu to be 1.0 on part of the upper boundary and* P
P PP y Macroilleis hauseri M=72,N=72,i,=19, andj,=13.

the central band between the two wings as shown in Fig.
7(a), and zero elsewhere. Notice that the central upper region
is also set to zero initially. This is crucial in our calculations
for spot patterns to have various expected forms. The value
of v is set to 1.0 initially everywhere. Tak&t=0.001 for
the time step. The distribution af finally (t=1500) settles
down to a pattern of five spots as shown in Fig)7This is
the pattern of the lady beetRlatynaspidius quinquepuncta-
tus native to Taiwar{8]. One of the popular species of lady
beetles, Coccinella septempunctatecalled the seven-star
beetle in Chinese, has bright red elytra with seven black
spots, arranged as 1/2, 2, 1 on each wisge Fig. 1 The
seven-star pattern can be obtained by choosing the diffusion
constants to b® ,=0.0005, andD,=0.025 with the same
initial distribution described above. The resultant pattern
from our calculation is plotted in Fig. 8. Another species
Epilachna crassimalaghat is also common in Taiwan has ten
black spots on the red elytr@dig. 9). This pattern can be
obtained using our model with diffusion coefficients chosen
to be D,=0.0003,D,=0.04, k=0, and the initial distribu-
tion of u on the boundary shown in Fig(d.

To obtain a stripe pattern as in the spechédacroilleis

FIG. 9. (a) Final distribution ofu with diffusion constants hauserishown in Fig. 1Qc), we have to adjust the saturation
D,=0.0003,D,=0.04 and saturation constant0. The pattern is ~ constant to a nonzero value. Choosing=0.000028,D,
similar to (b), pattern of the beetl&pilachna crassimal@ommon  =0.000168,x=0.35, and an initial distribution ofi as in
in Taiwan. M=48,N=48,i,=9, andj,=1. Fig. 10@), we obtain the pattern Fig. 1), which is indeed

(b)
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[ such that neither the spot nor stripe pattern is complete domi-
nant. That is, a pattern that is a mixture of spots and stripes
is possible.

The pattern of the specie8othrocalvia albolineata
shown in Fig. 11c) has a loop on each side of the hard
(@ - wings. It turns out that it is difficult, if not impossible, to
generate this pattern using the no-flux boundary condition. In
order to obtain this pattern, we introduce a constant produc-
tion term foru, o, and consider the central line that sepa-
rates the two wings as a sink for morphogens. That is, the
distributions ofu andv are set to zero on the central line at
any time during the process of diffusion. Choosiiy,
=0.000026,D,=0.000 182,x=0.45, ando,=0.0019, and
initial distribution of u as in Fig. 11a), we obtain the final
pattern shown in Fig. Xb), which is similar to the target
pattern, Fig. 1(c).

VI. CONCLUSION

We have applied a specific type of Turing model to simu-
late the formation of the patterns on lady beetles’ hard wings.
The diffusion equations of two interacting morphogens are
solved numerically on a surface of constant curvature. Sev-
eral common lady beetle patterns, such as spots, stripes, and
loops, can be obtained by choosing appropriate diffusion co-
efficients and simple initial distributions of the morphogens.

FIG. 11. (3 Initial and (b) final distributions ofu with diffusion ~ Our calculation offers one more successful example support-
constantsD = 0.000 026,D,=0.000 182 and saturation constant ing the reaction-diffusion dynamic process as a quite general
x=0.45. Additional constant production term faro,=0.0019,is Mechanism in generating biological patterns. Furthermore,
added to Eq(2) and the central line that separates the two wings iswe found that the geometry of the organism is essential in
considered as a sink. The final pattern is similafcp pattern of the ~ reproducing the patterns on it. A more careful study of the
beetle Bothrocalvia albolineata M=72, N=72, i,=19, and effects of various geometries is currently under way.
jo=6.
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